THE CORRELATION BETWEEN THE COST OF COLLEGE AND FUTURE EARNINGS

By

MICHELLE COLLINS

A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE OF STETSON UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE

STETSON UNIVERSITY
TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

ABSTRACT

CHAPTERS

1. INTRODUCTION

2. SIMPLE LINEAR REGRESSION (PUBLIC AND PRIVATE)

3. SIMPLE LINEAR REGRESSION (PRIVATE ONLY)

4. SIMPLE LINEAR REGRESSION (PUBLIC ONLY)
5. MULTIPLE LINEAR REGRESSION ------------------------------------ 24
 5.1 School ranking and 4-year tuition cost vs. Mid-Career Income for Public and Private Colleges----------------------------- 24
 5.2 Assumptions and Data Collection------------------------------- 25
 5.3 Regression Analysis Ranking, Tuition and Mid-Career Income---- 26
 5.4 Residuals for Ranking and Tuition------------------------------- 29
CONCLUSION AND FUTURE RESEARCH----------------------------------- 30
REFERENCES--- 32
LIST OF TABLES

TABLE

1. Return on Investment for Top Ten college Majors----------------------------- 9
2. Regression Analysis Results (Public and Private)---------------------------- 10
3. Regression Analysis Results (Public and Private) w/o Outliers-------------- 12
4. Regression Analysis Results (Private Only)-------------------------------- 16
5. Regression Analysis Results (Private Only) w/out Outliers----------------- 18
6. Regression Analysis Results (Public Only)-------------------------------- 22
7. Multiple Regression Results--- 26
LIST OF FIGURES

FIGURE

1. Simple Linear Regression Plot (Public and Private)-- 12
2. Simple Linear Regression Plot (Public and Private) w/o Outliers--------------------------------- 14
3. Residual Plot (Public and Private) w/ outliers--- 15
4. Residual Plot (Public and Private) w/ out outliers--- 15
5. Simple Linear Regression Plot (Private Only) w/ outliers--- 18
6. Simple Linear Regression Plot (Private Only) w/ outliers--- 20
7. Residual Plot (Private) w/ outliers-- 21
8. Residual Plot (Private) w/ outliers--- 21
9. Simple Linear Regression Plot (Public Only)-- 23
10. Residual Plot (Public Only)--- 24
11. Ranking vs Mid-Career Earnings-- 27
12. Tuition Cost vs Mid-Career Earnings--- 28
13. Actual Mid-Career Earnings vs. Predicted Mid-Career Earnings-------------------------------------- 28
14. Ranking Residuals--- 29
15. Tuition Residuals--- 30
ABSTRACT
THE CORRELATION BETWEEN THE COST OF COLLEGE AND FUTURE EARNINGS

Prepared By:
Michelle Collins
December 2016

Advisor: Dr. Lisa Coulter

Department of Mathematics

The purpose of this project is to analyze the relationship between the cost of a bachelor’s degree from a Florida college, and the mid-career earnings it provides the graduate. The return on investment is calculated for the 10 most popular majors. Simple regression is used to analyze the relationship between cost of a bachelor’s degree from a Florida college, and mid-career earnings it provides the graduate. Multiple regression is used to analyze how the cost of a Florida bachelor's degree and the rank of the college correlate with mid-career earnings for bachelor’s degree holders.
CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

College tuition has risen by 945% since 1980. This dramatic increase is due
to supply and demand. Some say government subsidies are to blame. Subsidies
drive the cost of a product or service down but, when things are less expensive,
demand rises, and this drives the cost up. Advocates for this type of subsidy state
that government aid allows more students to go to college. However, many students
struggle to complete a degree program for various reasons. Two thirds of college
students do not graduate on time and 40% of them drop out, many with substantial
debt. For those who do graduate, a college degree does not always deliver on the
promises of higher earnings. Many graduates end up with jobs they could have
gotten without spending tens of thousands of dollars on a college degree [A1].

1.2 RETURN ON INVESTMENT

Is the investment in a college degree still worth it? The main question to
consider is, “What is your major”? According to data collected from U.S. News and
World Report, the average cost of a bachelor’s degree at a Florida public university
is $43,610. This is the average cost of 15 public colleges. The average cost of a
bachelor’s degree at a Florida private university is $98,049. This is the average of 22
private colleges. The average financial aid package was deducted from the total cost
of tuition per year, times four. The most popular college majors are History, English
Language and Literature, Liberal Arts and Sciences, Accounting, Criminal Justice and
Corrections, Teacher Education, General Biology, Nursing, General Psychology and
Business Administration [A2]. In order to calculate the return on investment (ROI), three careers and their mid-career earnings from each major were considered [A6-A14]. The mid-career median earnings for each was multiplied by 3% per year for cost of living increase and added over 30 years [A3]. The cost of the degree was subtracted and then that figure was divided by cost.

\[
ROI = \frac{30 \text{ year gains} - \text{degree cost}}{\text{degree cost}}
\]

The average ROI of the three careers considered for each major is listed in Table 1. This calculation is a widely used profitability ratio that calculates profits of an investment as a percentage of its original cost. This does not take into consideration the time value of money. However, this calculation is simple and can be used for any investment.

1.3 RETURN ON INVESTMENT ANALYSIS

The ROI's were calculated for the top ten college majors. Any positive ROI is considered a good investment. This means that the total cost of the investment was recouped and profit was made [A4]. For example, the ROI for a History major who earned a bachelor’s degree from a Florida public school is 50%. This means that .50 cents will be made for every dollar invested. This is a good investment. A negative return means that the return did not cover the cost and no profit was made. For a bachelor’s degree the return on investment for the top ten college majors is positive, making this investment worthwhile. However, some college majors are a better investment than others.
<table>
<thead>
<tr>
<th>Major</th>
<th>Return on Investment Private</th>
<th>Return on Investment Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>22%</td>
<td>50%</td>
</tr>
<tr>
<td>English</td>
<td>21%</td>
<td>49%</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>30%</td>
<td>68%</td>
</tr>
<tr>
<td>Accounting</td>
<td>29%</td>
<td>66%</td>
</tr>
<tr>
<td>Criminal Justice</td>
<td>40%</td>
<td>92%</td>
</tr>
<tr>
<td>Education</td>
<td>22%</td>
<td>52%</td>
</tr>
<tr>
<td>Biology</td>
<td>30%</td>
<td>69%</td>
</tr>
<tr>
<td>Nursing</td>
<td>27%</td>
<td>62%</td>
</tr>
<tr>
<td>General Psychology</td>
<td>29%</td>
<td>67%</td>
</tr>
<tr>
<td>Business Administration</td>
<td>31%</td>
<td>72%</td>
</tr>
</tbody>
</table>

Table 1-Return on Investment for Top Ten College Majors

CHAPTER 2

SIMPLE LINEAR REGRESSION PUBLIC AND PRIVATE SCHOOLS

2.1 PUBLIC AND PRIVATE COLLEGE TUITION VS. MID-CAREER INCOME

Now that we know the investment in a bachelor degree from a Florida school is a good investment that yields a positive return, simple linear regression will be used to analyze the relationship between Florida colleges tuition price and mid-career median income for graduates.

2.2 ASSUMPTIONS AND DATA COLLECTION

The assumption is that these two pieces of quantitative data have a linear relationship. All data figures for tuition and average financial aid package were
retrieved from US News and World Report [A15]. Fifteen private schools and ten public schools are considered. In order to be included in this analysis, three pieces of data were needed, the per year tuition price, the average aid package offered and mid-career earnings. Many public schools have one rate for residents and another rate for non-residents. In this case the average of the two is used as the tuition price per year. Multiply this rate by four, to allow the student four years to graduate. The average student aid package was deducted from the total to give a total cost of tuition. Room and board expenses were not considered because those expenses are incurred even if one does not attend college. All mid-career income figures were taken from PayScale’s 2016-2017 College Salary Report [A6]. We want to know if the cost of college, in Florida, has a relationship with mid-career earnings.

Table 2-Regression Analysis Results (Public and Private)

2.3 SIMPLE REGRESSION ANALYSIS (PRIVATE AND PUBLIC SCHOOLS)

The results of this linear regression are located in Table 2. The table shows that the linear correlation coefficient R is .207. This statistic measures the strength
and direction of the linear relationship. The relationship between the tuition cost and mid-career income is positive but not very strong. The closer the correlation coefficient is to 1, the stronger the linear relationship. The coefficient of determination R-squared is .04. This means that only 4% of the variability of mid-career income is explained by the cost of tuition. Adjusted R-Squared is less than 1%. This is perhaps a better measure because it takes into consideration the sample size. The standard error measures the variability of the actual mid-career income versus the predicted mid-career income given by the model. The equation for this model is

\[\text{mid career earnings} = 66,719.15 + 0.05484 \times \text{tuition cost} \]

The dependent variable is \(y \), mid-career earnings. The independent variable is \(x \), tuition cost. If the correlation was strong, then this equation could be used to predict a mid-career salary based upon the total paid for college. Given that the correlation factor and coefficient of determination are low, this is not a useful model. The p-level is .322. This means that the likelihood these results occurred randomly is 32.2%. The HO is accepted. In order for this to be rejected, that these results are unlikely to have occurred randomly, the p-level would need to .05 or less. In Figure 1 there is a graph showing the linear relationship and the line of best fit. From the graph it is easy to see there are two outliers. These two schools are Embry Riddle and Florida Institute of Technology. They award a greater percentage of Science, Technology, Engineering and Math (STEM) degrees than the other schools in the sample. Therefore, their mid-career income is very high. Including them can skew results.
Figure 1 - Simple Linear Regression Plot (Public and Private)

Linear Regression

Regression Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.0139</td>
</tr>
<tr>
<td>R-square</td>
<td>0.00019</td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>-0.04742</td>
</tr>
<tr>
<td>S</td>
<td>7,563,270,54</td>
</tr>
<tr>
<td>N</td>
<td>23</td>
</tr>
</tbody>
</table>

Mid-Career Income = 69,462.65753 - 0.00274 * Tuition Cost

ANOVA

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>232,235,917/6</td>
<td>232,235,917/6</td>
<td>0.00406</td>
<td>0.9498</td>
</tr>
<tr>
<td>Residual</td>
<td>22</td>
<td>1,291,496,521,739/3</td>
<td>1,291,496,521,739/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>1,523,732,437,695/9</td>
<td>1,523,732,437,695/9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>LCL</th>
<th>UCL</th>
<th>t Stat</th>
<th>p-level</th>
<th>H0 (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>69,462.65753</td>
<td>3,784,167/77</td>
<td>67,593,240,455</td>
<td>71,496,051,072</td>
<td>10.35800</td>
<td>0.00000</td>
<td>rejected</td>
</tr>
<tr>
<td>Tuition Cost</td>
<td>-0.00274</td>
<td>0.043</td>
<td>-0.09216</td>
<td>0.08688</td>
<td>-0.0672</td>
<td>0.9498</td>
<td>accepted</td>
</tr>
</tbody>
</table>

T (5%) = 2.07961
LCL - Lower value of a reliable interval (LCL)
UCL - Upper value of a reliable interval (UCL)

Table 3 - Regression Analysis Results (Public and Private) w/o Outliers
2.4 OUTLIER ANALYSIS

Table 3 shows the results of linear regression excluding the two outliers. Both of the outlier schools are private schools with unusually high mid-career earnings. In this case, including them skews the results upward. The correlation coefficient when the outliers are excluded is lower and results in a weaker correlation between tuition cost and mid-career earnings. The R squared value here is also lower. Less than a half of a percent of the variability in median income is explained by tuition cost. Including the two outlier schools results in a higher linear correlation. The adjusted R-squared is negative. The hypothesis is still the same, it is accepted, it is likely that these results occurred randomly with a very high probability rate of 95%, as compared with 32.2% with the outliers included. Figure 3 depicts this graphically. With the outliers removed from the sample, there is a slightly negative slope indicating there is now a negative correlation between the two pieces of data.
2.5 RESIDUALS

Residuals are the difference between the predicted mid-career income, as given by our model, and the actual mid-career income, that is given by our data. It’s always a good idea to graph out the residuals. We want to be sure there are no obvious patterns. Figure 2 shows the residual graph for the model when outliers are included. Figure 3 shows the residuals for the model when outliers are excluded. There are no obvious patterns.
Figure 3 - Residual Plot (Public and Private) w/ outliers

Figure 4 - Residual Plot (Public and Private) w/out outliers
CHAPTER 3
SIMPLE LINEAR REGRESSION PRIVATE ONLY

3.1 PRIVATE COLLEGE TUITION VS MID-CAREER INCOME

For the schools previously considered, the average private school tuition price is more than double the Florida public school tuition price. However, public schools mid-career income is slightly higher on average by about $1,000 per year. It’s worth knowing if the high price tag of a private college has a relationship with mid-career earnings. For this regression analysis, 15 private schools are considered.

3.2 ASSUMPTIONS AND DATA COLLECTION

The assumption is that tuition cost and mid-career income have a linear relationship. Data was available for 15 Florida private schools. Calculations are the same as the previous analysis.

<table>
<thead>
<tr>
<th>Linear Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression Statistics</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>R-square</td>
</tr>
<tr>
<td>Adjusted R-square</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

Mid Career Pay = 50,187.06882 + 0.19551 * 4-year cost with aid

<table>
<thead>
<tr>
<th>ANOVA</th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1.</td>
<td>491,919,461.06296</td>
<td>491,919,461.06296</td>
<td>4.42189</td>
<td>0.05553</td>
</tr>
<tr>
<td>Residual</td>
<td>13.</td>
<td>1,446,196,872.27038</td>
<td>111,245,913.25157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14.</td>
<td>1,998,113,333.33333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard Error</th>
<th>LCL</th>
<th>UCL</th>
<th>t Stat</th>
<th>p-level</th>
<th>H_0 (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-year cost with aid</td>
<td>0.19551</td>
<td>0.09297</td>
<td>0.080535</td>
<td>0.39636</td>
<td>2.10283</td>
<td>0.05553</td>
</tr>
</tbody>
</table>

Table 4-Regression Analysis Results (Private Only)
3.3 SIMPLE REGRESSION ANALYSIS (PRIVATE SCHOOLS ONLY)

Table 4 shows the results of the regression analysis that only includes private schools. This shows a stronger relationship than when public and private schools with outliers were considered together. The correlation factor R of .53 indicates a stronger correlation than before. R- squared shows that 25% of the variability in mid-career earnings is explained by tuition cost. Adjusted R-squared takes into account the sample size of 15 and hovers around 20%. The standard error is within $500.00 of each other. When private schools are considered alone the correlation between tuition and income is stronger than when public and private are considered together. The p-level of .03 indicates that it is unlikely this correlation occurred randomly. Figure 5 shows these results graphically.

For private colleges, I have 15 data pieces ranging from $55,000 to $152,000. For public colleges, I have 10 data pieces ranging from $33,000 to $58,000. Public colleges have a tighter value range. Perhaps private colleges give a better correlation because their tuition prices have a wider range of values.
Figure 5-Simple Linear Regression Plot (Private Only) w/outliers

Linear Regression

Regression Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.60139</td>
</tr>
<tr>
<td>R-square</td>
<td>0.36167</td>
</tr>
<tr>
<td>Adjusted R-square</td>
<td>0.30364</td>
</tr>
<tr>
<td>S</td>
<td>6010.94095</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
</tr>
</tbody>
</table>

Mid-Career Pay = 53,214.56285 + 0.13539 * Tuition Cost

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>225,185,246,46677</td>
<td>225,185,246,46677</td>
<td>6.2324</td>
<td>0.02969</td>
</tr>
<tr>
<td>Residual</td>
<td>11</td>
<td>307,445,522.764</td>
<td>36,131,411.1938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>622,630,769.23077</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>LCL</th>
<th>UCL</th>
<th>t Stat</th>
<th>p-level</th>
<th>H0 (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>53,214.56285</td>
<td>5,868.50238</td>
<td>49,298.07621</td>
<td>66,131.04949</td>
<td>9.06783</td>
<td>1.94757E-6</td>
<td>rejected</td>
</tr>
<tr>
<td>Tuition Cost</td>
<td>0.13539</td>
<td>0.05423</td>
<td>0.01603</td>
<td>0.25476</td>
<td>2.49648</td>
<td>0.02969</td>
<td>rejected</td>
</tr>
</tbody>
</table>

T (5%) = 2.20996
LCL - Lower value of a reliable interval (LCL)
UCL - Upper value of a reliable interval (UCL)

Table 5-Regression Analysis Results (Private Only) w/out outliers
3.4 OUTLIER ANALYSIS

The outliers from the previous analysis are in this sample as they are both private schools. In the last analysis, including the outliers resulted in a higher correlation factor and lower p-value than when they are excluded. The results, when they are excluded, from the private college analysis is located in Table 5. These results indicate excluding the outliers increases the correlation between tuition cost and mid-career income. The correlation factor R is .60, this results in a stronger linear relationship. R-squared indicates that 36% of the variability in mid-career income is explained by tuition cost. It’s interesting that when private and public colleges were lumped together in the previous analysis excluding the outliers resulted in a weaker linear relationship. However, in this case, when only considering private colleges, and excluding the outliers, the results show a stronger linear relationship. Adjusted R-squared is .30. This statistic takes into account the sample size, which is 2 fewer with the outliers excluded, but correlation is stronger here than in the previous analysis when 16 private colleges were considered. The standard error is much lower in this model than in the previous model where outliers are included. The p-level is low and indicates that it is unlikely that these results occurred randomly. This looks like a much better model with the outliers excluded. Figure 6 depicts these results graphically.
3.6 RESIDUALS

It’s a good idea to graph out the residuals and check for any patterns to be sure that assuming a linear relationship is reasonable. Figure 7 shows the residual plot for the model where outliers are included. Figure 8 shows the residual plot for the model where outliers are excluded. There are no obvious patterns.
Figure 7 - Residual Plot (Private) w/ outliers

Figure 8 - Residual Plot (Private) w/out outliers
CHAPTER 4

SIMPLE LINEAR REGRESSION PUBLIC ONLY

4.1 PUBLIC COLLEGE TUITON VS MID-CAREER INCOME

Public colleges are larger schools so the cost associated with attending one is much less. Class size is much larger and access to teachers for extra help may or may not be accommodated. Simple linear regression will be used to determine if there is a correlation between tuition cost and mid-career income for ten Florida public colleges.

4.2 ASSUMPTIONS AND DATA COLLECTION

The assumptions for this analysis are the same as the others. Each of the ten schools in the sample does have separate tuition rates. The average of the in-state and out-of-state tuition rates were used in this analysis.

Table 6-Regression Analysis Results (Public Only)

4.3 SIMPLE REGRESSION ANALYSIS (PUBLIC SCHOOLS)

The R-square value here is .14, indicating that 14% of the variability in median income is due to tuition rates. The adjusted R-squared is low at .03. The
p-level indicates that it is likely that these results occurred randomly. There are no outliers in this sample. Most of the mid-career earnings figures for these schools are close to each other, the lowest earnings being $64,700 and the highest $85,100 and all the other earnings in between. I think the small sample size is affecting these results in addition to the tight range of tuition cost. Figure 9 shows these results graphically.

Figure 9-Simple Linear Regression Plot (Public Only)

4.4 RESIDUALS

Figure 10 shows the residual plot. There are no obvious patterns.
CHAPTER 5
MULTIPLE LINEAR REGRESSION

5.1 SCHOOL RANK AND 4-YEAR TUITION COST VS. MID-CAREER INCOME FOR PUBLIC AND PRIVATE COLLEGES

When both private and public colleges were considered together tuition cost and mid-career income had little correlation. When only private schools were considered the correlation between tuition and mid-career income was stronger. When public schools were considered alone, the correlation was weak. This may be due to the small size of the sample. In the previous analysis 10 public colleges and 15 private colleges were included. In this analysis 5 public colleges and 13 private
colleges are considered. Another independent variable will be considered in addition to tuition rates, the school ranking.

5.2 ASSUMPTIONS AND DATA COLLECTION

National universities are schools that offer a wide-range of undergraduate programs as well as master’s and doctoral programs. Regional universities are schools that offer a full range of undergraduate programs, some master’s programs but few doctoral programs. Liberal Arts colleges award half of their degrees in the liberal arts field and emphasize undergraduate programs [A15]. In order to be included in this sample four pieces of data were needed, rank, tuition cost per year, average aid package and mid-career income. There are 18 schools included in this analysis, 7 of them are National Schools, 1 is a National Liberal Arts college and 10 are regional schools. The National Schools are the top schools followed by the regional schools. I took the rankings of the National schools and ordered them according to their rank and then ordered the regionals according to their rank. A ranking starting with the number 1 was given to the highest ranked school and a ranking of 16 to the last ranked school, with a tie for 16 between three schools. All school rankings were retrieved from US News and World Report [A15]. All mid-career incomes were taken from PayScale’s 2016-2017 College Salary Report [A6].
26

Table 7-Multiple Regression results

5.3 REGRESSION ANALYSIS RANK, TUITION AND MID-CAREER INCOME

Right away I am drawn to the p-values of this table to check the significance
of the results when another independent variable is added to the analysis. When
tuition was considered without rank the correlation was very low and the p-value
indicated that it was likely the correlation may have occurred randomly. When
ranking is also considered the p-level for ranking is .035, this indicates that it is
unlikely the results for ranking occurred randomly. However, when we look at the
p-value for tuition cost it is .592 indicating that it is likely the results occurred
randomly. In the simple linear regression analysis the tuition cost had little
correlation with mid-career income but adding rank results in a correlation.
However, with an overall p-value of .08, it is accepted that these results may have
occurred randomly. The same schools are being considered with 4 public schools
and 3 private schools omitted due to lack of data. Is rank pulling the weight here to
make R-squared 28%? To check this theory plots of rank and mid-career income are
shown in figure 11. A plot of tuition cost and mid-career income is shown in
These separate plots show that rank is pulling most of that R squared and correlation statistic. Adjusted R squared is pretty low at .19. There is a correlation. However, the rank is accounting for most of it. Figure 13 shows the multiple regression models predicted mid-career income and the actual mid-career income. As you can see the total R-squared in this plot is roughly equal to the sum of the R-squared when the independent variables are graphed separately with the dependent variable of mid-career income.

Figure 11-Ranking vs. Mid-Career Earnings
Figure 12 - Tuition Cost vs. Mid-Career Earnings

Figure 13 - Actual Mid-Career Earnings vs. Predicted Mid-Career Earnings
5.4 RESIDUALS FOR RANK AND TUITION

The regression results show there is a correlation between rank, tuition cost and mid-career earnings. Our assumption is that there is a linear relationship. Graphing out the residuals will show if I am fitting this data to the correct type of function. The ranking residuals are shown in figure 14. The tuition residuals are shown in figure 15. There are no obvious patterns so assuming a linear fit is appropriate.

Figure 14 - Ranking Residuals
CONCLUSION AND FUTURE RESEARCH

Further work on the multiple linear regression will be done. I think I need to throw away the independent variable of tuition cost and find a new statistic to analyze. How much a student pays for a bachelor’s degree does not seem to have much correlation with future earnings. That is good to know. Ranking seems to have a correlation. Does a gradutes college GPA and school ranking affect future earning potential? Does the college that the degree is obtained from really matter? The last sentence may be hard to quantify and will take some research.

This piece of the project concentrated on bachelor’s degrees and if the future earnings are worth the cost. Future research will include other degree types, in particular technical degrees and associates degrees. Generally, the cost and time
associated with attaining one of those is less than the cost of attaining a bachelor's degree. Do they offer a better return on the investment than a bachelor degree? What are they worth in terms of future earnings? Does the school ranking affect future earnings? Does the students GPA affect future earnings?

The original headline that peaked my interest was on the cover of Consumer Reports and it read, “42 million people owe $1.3 trillion in student debt” [B1]. The article inside cites that there are many people out there whose lives are on hold due to the enormous debt they have accumulated while attending college. With the cost of college rising so rapidly over the past few decades, I want to know, is college still a worthy investment? Keep in mind there are certainly other favorable things obtained from the college experience that cannot be measured in dollars and cents.
REFERENCES

A. ONLINE

[A2] http://college.usatoday.com/2014/10/26/same-as-it-ever-was-top-10-most-popular-college-majors/ -USA Today College. Same as it ever was: Top ten most popular college majors. 2014

American Historical Information-2016

B. OFFLINE